

Introduction

- Fiber-reinforced tissues, such as annulus fibrosus (AF) and tendon, consist of collagen fibers embedded in a extrafibrillar matrix of water (~70%) and proteoglycans (~4% wet weight; Fig 1)[1, 2].
- Fiber-reinforced tissues have excellent swelling capacity [3]; however, the effect of swelling on tensile tissue mechanics is not well understood.
- Many computational models describe extrafibrillar matrix as a hyperelastic material, which ignores tissue swelling effects.
- We developed a multi-lamella model to evaluate the effect of the osmotic loading on tensile mechanics of fiberreinforced tissues.
- Tissue swelling was described using the triphasic mixture theory, and fiber angle orientation was varied to represent a variety of fiber-reinforced tissues; however, the material properties used were based on AF experimental data.

Method

Geometry

- Models were developed in FEBio and consisted of three welded lamellae with alternating fibers (Fig. 2; ~34k nodes, 31k elements).
- Fiber angles include $0^{\circ}, \pm 30^{\circ}, \pm 45^{\circ}, \pm 60^{\circ}, \text{ and } \pm 90^{\circ}$.

Material coefficients

• The extrafibrillar matrix solid was described as a Holmes-Mow material (Table 1) [4]

Table 1: Triphasic model material parameters for extracellular matrix

Holmes-Mow model	E (MPa)	Poisson's	Stiffening	Fixed charge density	-120 mmol/L
		ratio: n	coefficient: b	Solid volume fraction [2]	0.3
(solid) [4]	0.0649	0.24	0.95		
Holmes-Mow	Permeability:	Exponential	Exponential	Diffusivity for Na ⁺ and Cl ⁻	0.00199 <i>mm²/s</i>
(Strain-		coefficient: M	term	Osmotic coefficient [5]	0.91
permeability)	$0.0064 \ mm^4/Ns$	4.8	$\alpha = 2$	Solubility <i>κ</i>	1

• Fibers were described using an exponential-linear function [6]. $C_3 = 0.052$ MPa; $C_4 = 98$; $C_5 = 88 \text{ MPa}; \lambda = 1.025.$

Load conditions

- Equilibrium swelling was simulated under osmotic loading conditions (hydration: 0.15 M (control), 0.75 M, and 1.5 M PBS).
- Then, uniaxial tension to 20% strain was applied (*rates:* steady state, 1%/s, and 4%/s).

Email: g.oconnell@berkeley.edu, web: oconnell.berkeley.edu

Osmotic Swelling Alters Tensile Mechanics in Fiber-Reinforced Tissues Bo Yang, Minhao Zhou, and Grace. D. O'Connell Mechanical Engineering, University of California - Berkeley, Berkeley, CA

Fig. 1. Sample fiber-reinforced soft tissue fiber architectures. θ : fiber angle orientation.

Fig. 3. (A) Tissue (±60deg fiber) before testing (left), during swelling (0.15M PBS; center) and under tension (right). (B) Fiber stretch during swelling with respect to fiber angle orientation. (C) Tensile stress-stretch behavior with respect to osmolality and loading rate. (D) Toe-region tensile modulus of tissue ($\pm 60^{\circ}$ fiber) after swelling in different osmolality PBS.

Results

Swelling decreased with osmolality: 45% increase in volume for 0.15 M PBS (Fig 3A) vs. 10% in1.5 PBS. Tissue elongation or contraction during swelling was dependent on the fiber angle orientation (Fig. 3B). The model was able to describe rate dependent effects (Fig. 3C - blue dashed line versus red dashed line). The toe-region modulus was more sensitive to changes in hydration (Fig. 3D).

Discussion

We developed a swelling-based model of fiber-reinforced tissues that demonstrated the effect of fiber angle orientation on tissue swelling and tensile mechanics.

The model was able to describe rate-dependent increase in tissue stiffness, which has been widely reported for biological tissues [7], but is not described by hyperelastic model descriptions [6]. Our simulation showed that the change in collagen fiber orientation significantly altered tissue pre-stress during swelling. Large shear stresses and strains developed at the layer interfaces ($\pm 30^{\circ}$, $\pm 45^{\circ}$, $\pm 60^{\circ}$ models), decreasing bulk tissue swelling compared to the 0° and $\pm 90^{\circ}$ cases.

• AF experiences tensile strains under physiological levels of axial compression, and these results suggest that fluid pressurization is important for load support during tension.

• A decrease in swelling, due to osmotic loading, resulted in a decrease in tissue toe-region stiffness, causing larger strains, which may lead to tear and damage accumulation (Poster #1780 on AF failure mechanics) [8]. • Future work will evaluate the role of fluid pressurization on failure mechanics of fiber-reinforced materials.

In conclusion, tissue hydration plays an important role in tensile mechanics of fiber-reinforced tissues and its contribution is highly dependent on fiber orientation.

References

[1] Cassidy, J + Conn. Tiss. 23(1): 75-88, 1989; [2] Iatridis, JC + Spine, 32:1493-97, 2007; [3] Bezci, SE + J Biomech Eng 137.10: 101007, 2015; [4] Lai, WM + J Biomech Eng., 113(3):245-58,1991; [5] Stadie, WC + J Bio Chem., 91:227-241, 1931; [6] Yang, B + Proc. of SB3C, MD, 2016; [7] Holzapfel G.A. + Biomech Model Mechanobiol. 3(3): 125-40, 2005; [8] Werbner B, +ORS, CA, 2017

Stretch